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Abstract. When returns on assets display heavy tail or leptokurtosis, estimating value
at risk (VaR) without considering distribution kurtosis can cause estimation bias. This
study considered the kurtosis of distribution, utilizing various models to examine the
conditional VaR of minimum variance portfolios (incorporating both the stock index and
futures) and performing back-testing to compare individual model performance. Results
demonstrate the improved accuracy of models using distribution kurtosis to estimate VaR.
Furthermore, t distributed models outperformed both those with a normal distribution
and symmetric volatility models in terms of the conditional VaR of minimum variance
portfolios. These results suggest that in portfolio construction, investors should consider
distribution kurtosis and volatility asymmetry.
Keywords: Value at risk, Back-testing, Stock index futures, Asymmetry model

1. Introduction. In 1996, the Basel Committee on Banking Supervision proposed amen-
ding the Basel Accord to designate VaR (Value at Risk) as the measurement standard
for calculating market risk. VaR is commonly applied in risk management. According to
the capital adequacy regulations of the Bank for International Settlement, if banks use
internal VaR models to assess market risk, then regular back-testing is needed to verify
model accuracy.

Portfolio VaR is defined as the maximum loss that can be expected with a given degree
of confidence over a particular time interval. When returns on assets display heavy tail
or leptokurtosis, the use of normal distribution to estimate VaR can cause estimation
bias. [8] proposed the GK (Gaver and Kafadar) model to capture the heavy tail and
leptokurtosis of returns on assets. [10] found that using the GK model to estimate VaR
was more accurate than using normal distribution.

Portfolio returns data usually exhibit volatility clustering; therefore, GARCH (Gener-
alized Autoregressive Conditional Heteroskedasticity) models are often used to capture
changes in the volatility of financial data over time [3,6]. Numerous researchers have used
GARCH models to estimate VaR [1,4]; however, GARCH models fail to capture the influ-
ence of asymmetrical market information. Consequently, [9] proposed the GJR (Glosten,
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Jagannathan and Runkle) model to identify the asymmetrical properties of volatility. [5]
extended the GJR model in the form of multivariate asymmetric diagonal VECH (AD-
VECH) models, which can capture cross-asymmetry effects in data. [14] indicated that
because most series of economic variables are non-stationary, the error correction (EC)
term must be incorporated to explain long-run equilibrium relationships and prevent esti-
mation bias. However, few studies have researched the use of multivariate EC-ADVECH
models to explore VaR.

The minimum variance approach proposed by [12], enables the construction of a mini-
mum variance portfolio incorporating stock indices and futures. Using the rolling window
method, this study used VEC-DVECH-n, VEC-DVECH-t, VEC-GJR-n, VEC-GJR-t,
VEC-ADVECH-n, and VEC-ADVECH-t models to examine the conditional VaR of min-
imum variance portfolios. Back-testing was used to compare model performance.

The empirical results were consistent with regard to minimum variance portfolios. Mod-
els that incorporated distribution kurtosis achieved more accurate conditional VaR than
other models. Furthermore, models using t distribution outperformed models using nor-
mal distribution in terms of the conditional VaR of minimum variance portfolios. Addi-
tionally, asymmetric volatility models were more accurate than models based on symmet-
ric volatility.

2. Sample Selection and Methodology.

2.1. Sample selection. This study sampled daily stock index and futures data for the
Hang Seng, S&P 500 and TOPIX. The sample period ran from July 21, 1998 to June 30,
2011, and 3211 observations were extracted from the Datastream database. Daily returns
on stock indices and futures were calculated as the difference in the logarithms of daily
closing prices multiplied by 100. Using the rolling window method, this study applied the
minimum variance method of [12] to create minimum variance portfolios incorporating
stock indices and futures.

2.2. Methodology. This study incorporated the EC term into the multivariate asym-
metrical diagonal VECH (ADVECH) model (hereafter known as the VEC-ADVECH
model) developed by [5]. The model was as follows:

ri,t = ai + biri,t−1 + ci (ln P1,t−1 − κ − δ ln P2,t−1) + djrj,t−1 + εi,i, i, j = 1, 2, i 6= j, (1)
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t

)
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where Equation (1) represents the returns on individual assets i, where ri,t denotes the
log-returns of individual asset i at time t. Additionally, ci refers to the error correction
term. In Equation (2), Φt−1 is the information set at time t − 1. Moreover, N may be a
multivariate normal distribution or multivariate t distribution.

Equation (3) is the conditional covariance of the returns between individual assets i
and j at time t. Also, α1ij captures the interaction effect of the returns shocks between
individual assets i and j at time t−1. Moreover, α2ij captures the asymmetric interaction
effect of the returns shocks between individual assets i and j at time t−1. If εk,t−1 < 0, k =
i, j, Iεk,t−1

is 1; otherwise, it is 0. Additionally, βij denotes the returns covariance between
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Table 1. Model specification comparison and parameter restrictions

Models α2 α3 α4 Models α2 α3 α4

VEC-DVECH-n 0 0 0 VEC-GJR-t Unrestricted 0 0
VEC-DVECH-t 0 0 0 VEC-ADVECH-n Unrestricted Unrestricted Unrestricted

VEC-GJR-n Unrestricted 0 0 VEC-ADVECH-t Unrestricted Unrestricted Unrestricted
Note: VEC-DVECH-n denotes a multivariate DVECH-n model with a vector error correction term. VEC-DVECH-

t is a multivariate DVECH-t model with a vector error correction term. VEC-GJR-n represents a multivariate

GJR-n model with a vector error correction term. VEC-GJR-t denotes a multivariate GJR-t model with a vector

error correction term. VEC-ADVECH-n is a multivariate ADVECH-n model with a vector error correction term.

VEC-ADVECH-t represents a multivariate ADVECH-t model with a vector error correction term.

individual assets i and j at time t − 1. The asymmetrical covariance effects produced
by α3ij and α4ij are known as cross-asymmetry effects or cross effects. ρij,t denotes the
dynamic conditional correlation coefficient in individual assets i and j at time t. Also,
qij,t captures the covariance between individual assets i and j at time t. Additionally, ̟1

represents the intertemporal persistence of the dynamic conditional correlation coefficient
in individual assets i and j. Furthermore, ̟2 denotes the dynamic conditional correlation
coefficient between individual assets i and j affected by time t − 1 normalization shocks.
Table 1 compares the model specifications and parameter restrictions. Because the log
likelihood function of the parameters is nonlinear, the maximum likelihood estimates of
the study parameters were obtained using the BHHH (Berndt, Hall, Hall and Hausman)
algorithm of [2].

This study used VEC-DVECH-n, VEC-DVECH-t, VEC-GJR-n, VEC-GJR-t, VEC-
ADVECH-n, and VEC-ADVECH-t models to compute the minimum variance hedge ratio

βt|Φt−1
of the minimum variance portfolio as σij,t|Φt−1

/

σ2
jj,t|Φt−1

. Using the hedge ratio

βt|Φt−1
, it is possible to ascertain the conditional return of the minimum variance portfolio

at time t. With a given level of significance α, the conditional VaR model of the minimum
variance portfolio pt is defined as follows:

P (rpt|Φt−1
≤ V aRpt|Φt−1

) = α, (6)

V aRpt|Φt−1
= δασpt|Φt−1

, (7)

where rpt|Φt−1
is the conditional return on the minimum variance portfolio (rpt|Φt−1

= ri,t−
βt|Φt−1

rj,t), ri,t(rj,t) denotes the return on the stock index (futures) at time t, and βt|Φt−1

refers to the minimum variance hedge ratio. V aRpt|Φt−1
is the conditional VaR of the min-

imum variance portfolio, and σpt|Φt−1
denotes the standard deviation of the return on the

minimum variance portfolio (σpt|Φt−1
=
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Furthermore, σ2
ii,t|Φt−1

(σ2
jj,t|Φt−1

) indicates the variance of the stock index (futures) re-
turn at time t under the dataset known at time t − 1. Moreover, σij,t|Φt−1

represents
the conditional covariance of the returns on stock indices and futures at time t under
the known dataset at time t − 1. Without considering kurtosis, δα is the αth percentile
of the standard normal distribution. When considering distribution kurtosis, this study
employed the GK model of [8], setting δα as δα = [n exp{z2

α(n − 3/2)/(n − 1)2} − n]1/2.
In the above formula, n indicates the degrees of freedom and zα represents the αth per-
centile of the standard normal distribution. This study also used the likelihood ratio test
(LR = −2 ln[(1 − c)T−xcx]+2 ln[(1 − (x/T ))T−x(x/T )x]) developed by [13] to examine the
back-testing results of the models.

3. Empirical Results.

3.1. Summary statistics and ARCH test. Table 2 shows descriptive statistics and
ARCH test results for the stock indices and futures of Hang Seng, S&P 500 and TOPIX.
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Table 2. Summary statistics and ARCH analysis

Statistic
Hang Seng S&P 500 TOPIX

stock index futures stock index futures stock index futures
Mean 0.0299 0.0302 0.0039 0.0036 −0.0127 −0.0126

Standard deviation 1.6800 1.8223 1.3532 1.3764 1.4368 1.5608
Skewness 0.0669 0.1215∗ −0.0909∗ −0.0492 −0.2885∗ −0.0929

Exceess kurtosis 6.7107∗ 4.7531∗ 6.6842∗ 8.0113∗ 6.3899∗ 10.6339∗

Jarque-Bera 6025.6449∗ 3029.5309∗ 5980.0970∗ 8585.4067∗ 5505.7071∗ 15128.9562∗

LB Q(6) 8.431 8.999 29.180∗∗ 24.192∗∗ 26.130∗∗ 39.989∗∗

LB Q2(6) 1095.023∗∗ 882.828∗∗ 1346.720∗∗ 1263.341∗∗ 1553.534∗∗ 1576.628∗∗

ARCH 3124.258∗ 3337.888∗ 1817.068∗ 1772.66∗ 2943.255∗ 1716.258∗

JT 546.7386∗ 531.7353∗ 532.7765∗ 506.8295∗ 530.5931∗ 468.0828∗

Note:

1. ∗∗ (∗) denotes statistical significance at 1% (5%) significant level.
2. LB Q(6) represents Ljung-Box Q test statistics of lag 6; the critical value is 16.81 (12.59) at 1% (5%)

significant level.
3. LB Q2(6) refers to Ljung-Box Q test statistics of lag 6 for squared series; the critical value is 16.81 (12.59)

at 1% (5%) significant level.
4. The ARCH test statistics proposed by Engle (1982) are based on the minimum of AIC as the time lags of

the stock index and futures are determined under the null hypothesis; no ARCH effects.
5. JT refers to a joint test, and it is a chi-square distribution with 3 degrees of freedom. The critical value at

5% significant level is 7.82.

At the 5% significant level, Jarque-Bera statistic for each series showed that it was not
normally distributed. This study also used the joint test (JT) developed by [7] to identify
the influence of residual from stock indices and futures on volatility. As shown in Table
2, the JT results for stock indices and futures significantly exceeded the critical value of
chi-squared distribution. This indicates that each of these figures had positive/negative
residual, and that the extent of this residual asymmetrically affected volatility.

3.2. Analysis of the conditional VaR of conditional minimum variance hedging

portfolios. Table 3 shows the conditional VaR of minimum variance portfolios compris-
ing the stock index and futures of Hang Seng, S&P 500, and TOPIX. When kurtosis was
considered, the number of exceptions was lower than when kurtosis was not considered.
This finding is consistent with that of [10]. At the 1% significant level, normally dis-
tributed models failed to pass back-testing, regardless of whether kurtosis was considered.
This may be because the normal distribution cannot capture heavy tail or leptokurtosis
of portfolio returns. This finding is consistent with the conclusions of [11,15]. Therefore,
this study used the t distribution to estimate portfolio VaR. The t distributed models
were associated with fewer exceptions than the normally distributed models, which can
be attributed to t distributed models capturing the heavy tail and leptokurtosis of port-
folio returns. This echoes the findings of [11,15]. Asymmetric volatility models had fewer
exceptions than symmetric volatility models, indicating that the conditional VaR of mini-
mum variance portfolios were more accurate owing to capturing the asymmetric properties
of volatility.

As demonstrated above, the results regarding minimum variance portfolios (regardless
of which stock index) remained consistent. At 1% or 5% significant level, models that in-
corporated kurtosis of distributions produced more accurate conditional VaR than models
that did not. Models using t distribution outperformed level, models that incorporated
kurtosis of distributions produced more accurate models following normal distribution in
the conditional VaR of minimum variance portfolios. Additionally, asymmetric volatility
models outperformed symmetric volatility models.

4. Conclusions. Using the minimum variance method, this study constructed minimum
variance portfolios incorporating stock indices and futures. Considering the kurtosis of
distribution, this study used different VEC models to investigate the conditional VaR of
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Table 3. Performance of models in estimating the conditional VaR of min-
imum variance hedging portfolios

Panel A: Hang Seng

Models

Without considering kurtosis distribution With considering the kurtosis distribution
Number of

LR
Number of

LR
exceptions exceptions
1% 5% 1% 5% 1% 5% 1% 5%

VEC-DVECH-n 147 189 241.9685 11.3309 145 186 235.4088 9.8050
VEC-DVECH-t 63 173 28.9875 4.4071 49 170 10.8586 3.4510∗

VEC-GJR-n 132 174 194.2209 4.7504 125 171 173.1383 3.7573∗

VEC-GJR-t 57 166 20.3471 2.3514∗ 40 157 3.3969∗ 0.6314∗

VEC-ADVECH-n 113 171 138.9279 3.7573∗ 99 167 102.3916 2.6073∗

VEC-ADVECH-t 38 161 2.2677∗ 1.2647∗ 36 149 1.3517∗ 0.0160∗

Panel B: S&P 500
VEC-DVECH-n 127 181 179.0802 7.4922 113 177 138.9279 5.8535
VEC-DVECH-t 44 168 6.2545∗ 2.8760∗ 39 165 2.8063∗ 2.1082∗

VEC-GJR-n 83 164 65.7049 1.8779∗ 70 159 40.5389 0.9214∗

VEC-GJR-t 36 153 1.3517∗ 0.2134∗ 27 149 0.2203∗ 0.0160∗

VEC-ADVECH-n 64 159 30.5442 0.9214∗ 59 146 23.0904 0.0161∗

VEC-ADVECH-t 26 143 0.4369∗ 0.1459∗ 23 139 1.5652∗ 0.5253∗

Panel C: TOPIX
VEC-DVECH-n 136 187 206.6197 10.3023 129 183 185.0880 8.3824
VEC-DVECH-t 54 170 16.5022 3.4510∗ 42 169 4.7290∗ 3.1572∗

VEC-GJR-n 96 167 95.0778 2.6073∗ 89 163 78.7763 1.6605∗

VEC-GJR-t 43 162 5.4681∗ 1.4560∗ 31 153 0.0758∗ 0.2134∗

VEC-ADVECH-n 82 165 63.6114 2.1082∗ 77 153 53.5267 0.2134∗

VEC-ADVECH-t 32 159 0.2083∗ 0.9214∗ 26 145 0.4369∗ 0.0448∗

Note:

1. ∗ denotes that the model passed back-testing.
2. LR denotes the likelihood ratio test; a chi-square distribution with 1 degree of freedom. The critical value

is 6.6349 (3.8415) at the 1% (5%) significant level.

minimum variance portfolios with back testing to compare individual model performance,
and suggest that future studies incorporate the level of returns into the volatility equation,
since this can enhance the performance of portfolio VaR.
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